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Abstract
Based on the canonical Nöther’s theorem and Poincaré–Cartan integral
invariant for a system with a singular higher-order Lagrangian, we present
a counterexample with any higher-order derivatives, in which no linearizations
of constraints are made to the system, showing that Dirac’s conjecture is invalid.
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1. Introduction

Local gauge invariance is now a central concept in modern field theories. There are some
constraints in phase space in the gauge theories that follow the requirement of local gauge
invariance. At present, Dirac’s theory of constrained systems [1] plays an important role in
theoretical physics. Dirac’s canonical formalism is the foundation of most general quantization
methods of gauge theories and has succeeded greatly in recent years. Nowadays the so-called
BRST (Beechi, Rouet, Stora, Tyutin) or BFV (Batalin, Fradkin, Vilkoviski) procedures are
of special importance. They allow us to perform the quantization of general gauge and
gravitational theories in a consistent way, not only with the Feynman path integral approach
but also at the operator level. Many quantization procedures of the gauge and gravitational
fields have been found.

However, in spite of its great achievements in many fields, some basic problems about
the theory itself are still widely discussed in the literature, one of which being Dirac’s
conjecture [1]. In his work on the generalized canonical formalism, Dirac conjectured
that all first-class constraints are independent generators of gauge transformations that
generate equivalent transformations among physical states. For both the Faddeev–Senjanovic
procedure [2] and BFV procedure based on BRST symmetry [3], the gauge conditions are
always directly related to the first-class constraints. If Dirac’s conjecture were invalid, the
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number of gauge conditions would change [4]. Thus the validity of Dirac’s conjecture is of
great importance to the quantization of the system [4].

The question whether Dirac’s conjecture is valid is closely connected with the problem
of the possible equivalence between Dirac’s procedure in terms of the extended Hamiltonian
HE and the Lagrangian description [5, 6]. There have been objections to Dirac’s conjecture
from time to time [7–10]. Several examples [11–13] were provided, where constraints are
re-written in linearized form, indicating that Dirac’s conjecture is invalid. But it has been
argued [14] that in those models the apparent failure of Dirac’s conjecture resulted from
the improper linearization of the function of the secondary first-class constraints (SFCC). If
we avoid rewriting those constraints in a linearized form and re-examine those supposed
counterexamples, we can show that Dirac’s conjecture is still valid [14]. On the other
hand, we have also provided some counterexamples for a system with a singular first-order
Lagrangian [15, 16], in which Dirac’s conjecture fails. Our counterexamples are discussed
without the linearization to the constraints. Here we discuss the invalidity of Dirac’s conjecture
for a system with a singular higher-order Lagrangian.

2. Dirac’s conjecture for systems with singular higher-order Lagrangian

Let us consider a system whose Lagrangian is given by

L = L(t; q(0), q(1), q(2), . . . , q(N))
where

q = [ q1, q2, . . . , qN ] q(0) = q q(s) = ds

dt s
q(t).

According to the Ostrogradsky transformation, we introduce the generalized canonical
momentum

p
(N−1)
i = ∂L

∂qi(N)
(i = 1, 2, . . . , N) (1a)

p
(s−1)
i = ∂L

∂qi(s)
− ṗ

(s)
i (s = 1, 2, . . . , N − 1). (1b)

The canonical Hamiltonian is

Hc =
N−1∑
s=0

p
(s)
i q

i
(s+1) − L (2)

which can be formed by eliminating the highest-order derivatives qi(Ni) from (1a). When the

extended Hessian matrix [∂2L/∂q
j

(N)] is degenerate, we cannot solve all qi(N) from (1a). This
implies that there are constraints in phase space. Suppose the primary first-class constraints
(PFCC) of the system are �a ≈ 0 (a = 1, 2, . . . , K), and the second-class constraints of the
system are θi ≈ 0 (i = 1, 2, . . . , I ). For any mechanical quantity F(t; q, p), we have [17]

dF

dt
≈ ∂F

∂t
+ {F,Hc} + λα{F,�α} + {F, θb′ }C−1

b′b

[
{θb,Hc} +

∂θb

∂t

]
(3)

where constraint multipliers λα related to first-class constraints are arbitrary functions, and
C−1
b′b satisfy C−1

b′b{θb, θb′′ } = δb′b′′ . Let δt be a infinitesimal parameter, then

F(δt) = F(0) + δt

(
∂F

∂t
+ {F,Hc} + λa{F,�a} + {F, θb′ }C−1

b′b

[
{θb,Hc} +

∂θb

∂t

])
t=0

. (4)
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Choosing another multiplier λ̃a(t), we can get an expression similar to (4), with λa replaced by
λ̃a . Subtracting these two results relevant to λa and λ̃a , respectively, we get

δF = εa{F,�a} (5)

where

εa = δt[λa(0)− λ̃a(0)]. (6)

Equation (5) shows that PFCC are generators of gauge transformations. Let ωa′ be another
transformation parameter like εa . Now we do the transformation twice according to
equation (4), firstly with εa , and then with ωa′. We get

F̃ = F(0) + εa{F,�a} + ωa
′ {F(0) + εa{F,�a},�a′ }.

Then we reverse the sequence of transformations, firstly with ωa
′
and then with εa:

F̃ = F(0) + ωa
′ {F,�a′ } + εa{F(0) + ωa

′ {F,�a′ },�a}.
Subtracting these two results, we get

δF = εaωa
′ {F, {�a,�a′ }} (7)

where Jacobi’s identity of a generalized Poisson bracket is used. Now we can see that
the Poisson bracket of two primary first-class constraints is also a generator of gauge
transformation. The Poisson bracket of two primary first-class constraints is still a first-class
constraint. {�a,�a′ } could be either a PFCC or SFCC. Thus one can extend Dirac’s conjecture
to the higher-order singular Langrangian system containing time explicitly: all first-class
constraints are generators of gauge transformations, generating equivalent transformations
among physical states.

3. The invalidity of Dirac’s conjecture for a system with a singular higher-order
Lagrangian

If Dirac’s conjecture holds true, the dynamics of a system possessing PFCC and SFCC should
be correctly described by the equations of motion deriving from the extended Hamiltonian [5,6]

HE = Hc + λaφ0
a + µakφ

k
a (8)

where Hc is a canonical Hamiltonian, φ0
a are PFCC, φka are SFCC, and λa and µak are

corresponding constraint multipliers, respectively. We can study the conservation laws derived
fromHE via the canonical Nöther first theorem to discuss the validity of Dirac’s conjecture [18].
Let us consider a model whose Lagrangian is given by

L =
N∑
s=1

(x(s)z(s) − y(s−1)z(s)) + xz. (9)

The Lagrangian (9) is invariant under scale transformation

x ′
(s) = ρ−1x(s) y ′

(s) = ρ−1y(s) z′(s) = ρz(s)

p′(N−1)
x = ρp(N−1)

x p′(N−1)
z = ρ−1p(N−1)

z

(10)

where ρ is a numerical parameter. According to the generalized canonical first Nöther’s
theorem, one can obtain the conservation law

p(s)x x(s) + p(s)y y(s) − p(s)z z(s) = const. (11)
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The situation when N = 1, 2 has been discussed [10, 18, 19], where Dirac’s conjecture is
pointed out to be invalid. Following the same method, let N = 3 in (9). The canonical
momentum are given by

p(2)x = z(3) p(2)y = 0 p(2)z = x(3) − y(2) (12)

and the canonical Hamiltonian is given by

Hc =
2∑
s=0

p
(s)
i q

i
(s+1) − L

= p(2)x (p
(2)
z + y(2)) +

1∑
s=0

p
(s)
i q

i
(s+1) − L̃ (13)

where L̃ = ∑2
s=1(x(s)z(s) − y(s−1)z(s)) + xz. The primary constraint is

φ0 = p(2)y ≈ 0. (14)

The stationary condition of the constraint yields the following secondary constraints:

φ1 = {φ0, HT } = −p(2)x − p(1)y ≈ 0

φ2 = {φ1, HT } = p(1)x + p(0)y ≈ 0

φ3 = {φ2, HT } = −p(0)x ≈ 0

φ4 = {φ3, HT } = −z ≈ 0

φ5 = {φ4, HT } = −z(1) ≈ 0

φ6 = {φ5, HT } = −z(2) ≈ 0

φ7 = {φ6, HT } = −p(2)x ≈ 0

φ8 = {φ7, HT } = p(1)x − z(2) ≈ 0.

All the constraints are first class. If Dirac’s conjecture holds true, the dynamics of this system
should be described by the equations of motion arising from the extended Hamiltonian (8).
All SFCC in the Hamiltonian are taken into account. According to the generalized canonical
first Nöther’s theorem, the existence of the conservation law (11) require that all SFCC
φk ≈ 0 (k = 1, 2, . . . , 8) be invariant under transformation (10). But it is clear that the above
constraints cannot satisfy these conditions under transformation (10). Thus the conservation
law (11) could not be obtained from the extended Hamiltonian (8). This implies that Dirac’s
conjecture is invalid in this model.

If we letN = 4, 5, 6 in (9) and repeat these procedures, we can get similar results: Dirac’s
conjecture fails in all these examples. The total number of secondary constraints derived is
13 (when N = 4), 16 (when N = 5) and 19 (when N = 6). For the convenience of further
discussion, we give the result in detail for N = 4 in (9). All the constraints are first class, and
they are given by

φ0 = p(2)y ≈ 0

φ1 = {φ0, HT } = −p(3)x − p(2)y ≈ 0

φ2 = {φ1, HT } = p(2)x + p(1)y ≈ 0

φ3 = {φ2, HT } = −p(1)x − p(0)y ≈ 0

φ4 = {φ3, HT } = p(0)x ≈ 0

φ5 = {φ4, HT } = z(0) ≈ 0

φ6 = {φ5, HT } = z(1) ≈ 0
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φ7 = {φ6, HT } = z(2) ≈ 0

φ8 = {φ7, HT } = z(3) ≈ 0

φ9 = {φ3, HT } = p(3)x ≈ 0

φ10 = {φ4, HT } = −p(2)x + z(3) ≈ 0

φ11 = {φ5, HT } = p(1)x − z(2) + p(3)x ≈ 0

φ12 = {φ6, HT } = −p(0)x + z(1) − p(2)x ≈ 0

φ13 = {φ7, HT } = p(1)x − z(0) ≈ 0.

Now we study the general situation (9)

L =
N∑
s=1

(x(s)z(s) − y(s−1)z(s)) + xz.

Following the same procedures, we have the canonical momentum

p(N−1)
x = z(N) p(N−1)

y = 0

p(N−1)
z = x(N) − y(N−1).

(15)

The canonical Hamiltonian is

Hc =
N−1∑
s=0

p
(s)
i q

i
(s+1) − L = p(N−1)

x (p(N−1)
z + y(N−1)) +

N−2∑
s=0

p
(s)
i q

i
(s+1) − L̃ (16)

where L̃ = ∑N−1
s=1 (x(s)z(s)−y(s−1)z(s))+xz. For any positive integerN , the primary constraint

is

φ0 = p(N−1)
y ≈ 0. (17)

For integer N > 3, we have

φ1 = {φ0, HT } = −p(N−1)
x − p(N−2)

y ≈ 0

φ2 = {φ1, HT } = p(N−2)
x + p(N−3)

y ≈ 0

φ3 = {φ2, HT } = −p(N−3)
x − p(N−4)

y ≈ 0

(18)

. . . . . . . . . . . .

φm = {φm−1, HT } = (−1)mp(N−m)
x + (−1)mp(N−m−1)

y ≈ 0 (19)

. . . . . . . . . . . .

φN−1 = {φN−2, HT } = (−1)N−1p(1)x + (−1)N−1p(0)y ≈ 0

φN = {φN−1, HT } = (−1)Np(0)x ≈ 0
φN+1 = {φN,HT } = (−1)Nz(0) ≈ 0
φN+2 = {φN+1, HT } = (−1)Nz(1) ≈ 0
φN+3 = {φN+2, HT } = (−1)Nz(2) ≈ 0

(20)

. . . . . . . . . . . .

φ2N = {φ2N−1, HT } = (−1)Nz(N−1) ≈ 0
φ2N+1 = {φ2N,HT } = (−1)Np(N−1)

x ≈ 0
φ2N+2 = {φ2N+1, HT } = (−1)N+1p(N−2)

x + (−1)Nz(N−1) ≈ 0
φ2N+3 = {φ2N+2, HT } = (−1)N+2p(N−3)

x + (−1)N+1z(N−2) + (−1)Np(N−1)
x ≈ 0

φ2N+4 = {φ2N+3, HT } = (−1)N+3p(N−4)
x + (−1)N+2z(N−3) + (−1)N+1p(N−2)

x ≈ 0

(21)

. . . . . . . . . . . .
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φ2N+k = {φ2N+k−1, HT } (22)

= (−1)N+k−1p(N−k)
x + (−1)N+k−2z(N−k+1) + (−1)N+k−3p(N−k+2)

x ≈ 0

. . . . . . . . . . . .

φ3N−1 = {φ3N−2, HT } = (−1)2N−2p(1)x + (−1)2N−3z(2) + (−1)2N−4p(3)x
= p(1)x − z(2) + p(3)x ≈ 0

φ3N = {φ3N−1, HT } = −p(0)x + z(1) − p(2)x ≈ 0
φ3N+1 = {φ3N,HT } = −z(0) + p(1)x ≈ 0.

(23)

Then we get {φ3N,HT } = −p(0)x = (−1)(N−1)φN , which is not another constraint. Therefore
we have found all constraints for the system (9), and all of them are first-class constraints. We
can see that some secondary constraints (for example, z(0) ≈ 0) are not invariant under (10).
It means Dirac’s conjecture fails for this system.

Thus we can see that Dirac’s conjecture always fails for a system whose Lagrangian is
given by (9), letting N be any positive integer. The total number of secondary constraints
contained in the system is generally 3N + 1 (13 for N = 3 (shown above) and 16 for N = 4,
respectively). The exceptions are that, when N < 3, because N is not large enough to go
through all the steps for the general case (18)–(23), the total number of secondary constraints is
not 3N +1. It has been calculated that the number of secondary constraints for those exceptions
are 2 for N = 1 [19], 3 for N = 2 [10, 18] and 8 for N = 3 (see above). Therefore we can
conclude that Dirac’s conjecture is generally invalid for singular higher-order Lagrangian
systems.

4. Poincaré–Cartan integral invariant and Dirac’s conjecture

The above conclusion could also be obtained using generalized the Poincaré–Cartan integral
invariant for a system with a singular higher-order Lagrangian. As is well known, the Poincaré–
Cartan integral invariant is equivalent to the equation of motions in classical mechanics. the
Poincaré–Cartan integral invariant has been generalized to a system with a singular higher-order
Lagrangian [10,20]. If the dynamical of a system is generated by an extended HamiltonianHE

obtained by adding a linear combination of all SFCC to the PFCC, the generalized Poincaré–
Cartan integral invariant can also be deduced, as long as all SFCC are invariant under the
total variation of canonical variables, including time. The use of the generalized Poincaré–
Cartan integral invariant enables one to write the equation of motion arising from the extended
Hamiltonian HE , and we can see that all first-class constraints appear in the Hamiltonian,
where one cannot introduce any distinction between PFCC and SFCC. That is to say, the
existence of the Poincaré–Cartan integral invariant for a system with a singular higher-order
Lagrangian implies that Dirac’s conjecture holds true for the system. The necessary and
sufficient condition for the equations to be the generalized canonical equations arising from
the extended HamiltonianHE is that the generalized Poincaré–Cartan integral invariant exists
for such a system. The generalized Poincaré–Cartan integral invariant for a system with a
singular higher-order Lagrangian differs from the usual one having a regular Lagrangian in
that the constraints must be invariant under the total variation of canonical variables, including
time. For the model mentioned above, the constraints φk ≈ 0 (k = 1, 2, . . . , 3N +1) should be
invariant under the transformation (10). Owing to these restrictions on canonical variables, one
cannot deduce all the generalized canonical equations arising from the extended Hamiltonian
HE with the generalized Poincaré–Cartan integral invariant. This implies that the equivalence
between the generalized Poincaré–Cartan integral invariant and the generalized canonical
equations derived from HE is violated. Thus we can find that Dirac’s conjecture is invalid
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for a system with a singular higher-order Lagrangian. It should be noticed that there is no
linearization to the constraints in this model.
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